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General expressions of diffraction intensity distribution of quasi-one-dimensional crystals are evaluated
within kinematical approximation. In order to gain the generality, diffraction intensity has been derived for
each of the fifteen conformation classes. Characteristic features of the diffraction patterns are discussed and it
is shown how the symmetry can be fully determined from the diffraction intensity distribution. General results
are tabulated and their application is illustrated on the �10,10� molybdenum disulfide nanotube.
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I. INTRODUCTION

Regular quasi-one-dimensional systems, such as organic
and inorganic nanotubes, nanorods, nanowires, stereoregular
polymers, etc. have attracted much attention over recent de-
cades. Their most important common characteristic is that all
of them are monoperiodic, i.e., they have translational or
helical symmetry along a single direction. On the other hand,
diffraction is among the most efficient methods for structural
characterizations. Due to its well-known relation to system’s
symmetry,1,2 it is particularly useful for crystalline samples.

In this paper we give quite general expressions for diffrac-
tion intensity distribution of arbitrary quasi-one-dimensional
crystals. The method stems from the classification of such
structures according to their symmetry. The corresponding
line groups are used to decompose quasi-one-dimensional
crystals into elementary parts �orbits� preserving the
symmetry.3 After a brief reminder on the structural properties
of the line groups �Sec. II�, we show �Sec. III� that there are
altogether 15 elementary types, i.e., conformation classes, of
quasi-one-dimensional crystals. Then, within kinematical
theory,4 we calculate analytically the diffraction intensity dis-
tributions for each of these classes �Sec. IV�, and discuss
characteristic features of the diffraction patterns �Sec. V�.

II. NECESSARY FACTS ABOUT STRUCTURE
OF THE LINE GROUPS

Due to the absence of the crystallographic restriction on
the order of the principal axis in monoperiodic systems, there
are infinitely many line groups. They are divided into 13
families, L�F� �F=1, . . . ,13�, having the form of the �weak-
direct� product L=ZPn of the generalized translation group Z
and point factor Pn. Generalized translations form infinite
cyclic group of screw axis �helical group� TQ�f� or glide
plane T��a /2�, generated by �CQ � f� and ��v �a /2�. The point
factor Pn �n is the order of the principle axis� belongs to one
of the seven classes of axial point groups: Cn, S2n, Cnh, Dn,
Cnv, Dnd, and Dnh. Pure rotations and translations along z
axis generate rotohelical subgroup L�1�=TQ�f�Cn of any line
group. It is the whole group for the first family L�1�; in the
families 2–8 it is halving subgroup, and index-four subgroup
in the families 9–13. Corresponding coset representatives,
called parities, are given in the third column of Table II.

For rational values of Q=q /r, there is a pure translational
subgroup of L�1� �and L�, and such groups we call commen-

surate to distinguish from the incommensurate ones. For a
commensurate first family group, it is possible to choose
integers q and r such that q= q̃n, and a number p= p̃n such
that n=GCD�p ,q� and rp̃=1+sq̃ for some integer s; then the
translational period and fractional translation are related as
a= q̃ f , and we write Tq

r�f�Cn. The spatial inversion I maps
TQCn into TQ�Cn=ITQCnI with Q�=n �i.e., q�=n and r�
=1� if Q=n �i.e., q�=n and r=1� and Q�=nQ / �Q−n� other-
wise. These two groups are different unless Q=q=n ,2n �i.e.,
q̃=1,2 and p=0,n, respectively, while r=1 in both cases�
when we get achiral groups: pure translational group T�a�
and zigzag group T2n

1 �a /2�. Only the achiral first family line
groups may be combined with parities other than U axis.
Thus, the symmetry of an incommensurate and/or chiral sys-
tem is either L�1� or L�5�=TQ�f�Dn. The principle axis order
of the isogonal point group is q for commensurate groups,
and infinity for incommensurate ones �in the latter case we
use convention q=��.

III. ELEMENTARY QUASI-ONE-DIMENSIONAL
CRYSTALS

Each transformation � of the symmetry group L leaves the
system invariant, meaning that � maps any particular atom A
into another one of the same chemical type, say A�=�A. The
set SA=LA of atoms obtained by action of all the transfor-
mations from L on A is called orbit of the atom A. As the
orbit is completely determined by the position of any of its
atoms, two orbits are ether disjoint or the same. Therefore,
orbits make a unique partition of the system by its symmetry
group. In fact, they are the simplest system invariant under
L, i.e., elementary building blocks of any other L-invariant
system.

Different orbits of the same group are classified with help
of the stabilizer or little group LA of atom A, being the set of
elements �A of L for which A is a fixed point, i.e., �AA=A.
Any atom Ai=yiA from the orbit of A has conjugated �and
accordingly isomorphic� stabilizer LAi

=yiLAyi
−1. This enables

defining of orbit type as the set of the orbits with the conju-
gated stabilizers.5 Since LA is a subgroup of L, it gives a
partition of L into the cosets yiLA, enabling to get the line-
group elements in the form �=yi�A. Different coset represen-
tatives yi map A into different atoms, meaning that the set YA
of the coset representatives, called transversal, is bijectively
related to the orbit as SA=YAA; still, transversal is not unique
as yi can be substituted by any yi�A. Classification of the
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orbits of the line groups3,6 resulted in 74 families of orbit
types.

There are different line groups with orbits with identical
transversals �but different stabilizers�, i.e., with the same
configuration. Thorough inspection of the derived orbits of
the line groups �taking into account freedom in the choice of
the transversal elements� shows that altogether there are 15
families of these different configurations, called conforma-
tion classes. Thirteen of them are the generic orbit types a1
of all the line-group families; their transversals are the
groups: Y�F�=L�F�, with F=1, . . . ,13 counting line-group
families. The remaining two are linear conformation classes:
single and two atom chains along z axis. One of them is
generated by the transversals being generalized translations
Z�f�, which along z axis act as pure translations, Y�14�

=T�f�. For the other one transversal contains additional
z-reversing element p−, and gets a form Y=Z+ p−Z; however,
such elements along z axis act as �h, implying that these
transversals �TQD1, TQC1h, TQD1d, T�C1h, T+S2nT, or T�
+S2nT�, depending on the line-group family� act effectively
as Y�15�=T�f�C1h. Conveniently, we denote conformation
classes by the corresponding transversals.

The symmetry of an orbit of the line group L is usually
greater than the line group, as additional �not from L� trans-
formations may also leave it invariant �indeed, only combi-
nations of all system’s orbits of L called symmetry fixing
sets3 provide the exact symmetry of L�. This gives covering

symmetry group Ỹ �full symmetry group of the orbit�, which
depends only on the transversal Y, i.e., of the conformation
class. Since the same conformation class may appear as an

orbit type of several line groups, it follows that Ỹ is super-
group of all the line groups with an orbit type corresponding
to the considered conformation class.

In Table I we list the symmetry of all the different orbits
of the line groups. The coordinate frame referred to in the
table is such that z axis is vertical while x axis is in vertical
mirror or glide plane, if they exist, or coincides with U axis;
if none of these symmetry elements exists, then x axis is
taken in the horizontal mirror or rotoreflectional plane �leav-
ing its direction arbitrary� while, for the first class, position
of x axis is arbitrary. Obviously, symmetry of the linear con-
formation classes is T�a�D�h while symmetry group of a
nonlinear orbit is one of the following groups: TQDn, TDnd,
T�S2n, TDnh, T�Cnh, T2n

1 Dnh, and TD�h. Some orbits for spe-
cial position of orbit representative have even larger symme-
try �e.g., orbit type a1 of the group T�a�S2n for z=a /4 has
doubled symmetry T2n

1 �a+2�Dnh�. Such special cases of Y�i�

are listed immediately bellow row of Y�i�; as the conforma-
tion class and transversal remain the same, the conditions
selecting the special case are given instead. Also, the orbits
of the achiral groups �Q=1,2n� of the first family have in-
creased symmetry with respect to the chiral ones, and for
these special cases of the transversal Y�1�, we use notations
Y�11� and Y�12�, respectively.

The conformation classes are illustrated in Figs. 1–5, tak-
ing from each class one transversal and one position of orbit
representative. The elements of symmetry are depicted as
follows: the atoms obtained from the orbit representative
�red online, while gray in print� by generalized translations

and pure rotations are black and purple �also connected by
such lines�. As for parities, U axis is green while vertical and
horizontal mirror planes are orange and gray, respectively, as
well as glide and rotoreflectional planes being also with zig-
zag and circularly shaped; the same color is reserved for the
atom obtained by the parity from the representative atom.

IV. DIFFRACTION INTENSITY FOR THE
CONFORMATION CLASSES

Scattering intensity S�k� of the diffraction on a particular
sample depends on the diffraction vector, k= �ksc−kin� /2�,
proportional to the difference of the scattered and incident
wave vectors. Within kinematical diffraction theory, for a
system with ith atom positioned at ri, S�k� is absolute square
of the scattering amplitude averaged per atom F�k�:

F�k� =
1

N
�

i

f i�k�e2�ik·ri. �1�

Here f i�k� is the scattering amplitude of the ith atom
�i=1, . . . ,N�; this is positive rapidly decreasing spherically
symmetric �i.e., f i�k�= f i�k�� function.

For a system with symmetry group L, above expression
splits into sums over the orbits. Precisely, we make the set of
orbit representatives �symcell�, taking an atom A from each
orbit. Then the orbit of the atom A consists of �YA�
= �L� / �SA� atoms of the same type, where YA and SA are the
transversal and stabilizer of A. The total scattering amplitude
becomes

F�k� =
1

N
�
A

�YA�FA�k� , �2�

and can be easily calculated when all amplitudes of the orbits
FA�k� are found. The latter are factorized:

FA�k� = fA�k�GYA�k�, GYA�k� = �
y�YA

e2�ik·ryA

�YA�
. �3�

Here ryA is position of the atom yA. The first factor, the
atomic scattering amplitude fA�k�, bears the physical infor-
mation on the diffraction power of atom A; in the calcula-
tions it is a known input. The second factor GYA�k� is purely
geometrical: it comprises the information on the arrangement
of the atoms and depends only on the conformation class.
Therefore, it can be calculated a priori for each of the fifteen
conformation classes. This way the amplitude for arbitrary
quasi-one-dimensional system is provided by Eq. �2� �when
atomic scattering amplitudes fA�k� are specified� since all
orbits of the line groups are exhausted by conformation
classes.

Here we perform this task, and calculate geometrical fac-
tors for all conformation classes. It is convenient to use cy-
lindrical coordinates. Thus, k= �k� ,� ,kz�, orbit representa-
tive is at rA= �DA /2,�A ,zA�, while the other atoms yA are at
ryA= �DA /2,�yA ,zyA�. When scalar product k ·ryA
=k��A cos��yA−��+kzzyA is substituted in Jacobi-Anger ex-
pansion eix cos �=�l=−�

+� ilJl�x�eil� �here Jl�x� is Bessel function
of order l�, Eq. �3� becomes
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TABLE I. Symmetry of the orbits of the line groups. For each orbit type �column OT� of all line-group families �separated by the

horizontal lines�, its transversal Y, full symmetry group Ỹ, and its isogonal group P̃I are given. Only one appearance of a transversal is
labeled �column CC� as the configuration class Y�i� while the other appearances by i only. Special cases are listed below Y�i� row only.

CC OT Y Ỹ P̃I CC OT Y Ỹ P̃I

Y�1� a1 TQ�f�Cn TQ�f�Dn Dq Y�9� a1 T�f�Dnd T�f�Dnd Dnd

11 Q=1 T�f�Dnh Dnh 8 z= f
4 T2n

1 � f
2 �Dnh D2nh

12 Q=2n T2n
1 �f�Dnh D2nh 12 z= f

4 T2n
1 � f

2 �Dnh D2nh

Y�14� b1 TQ�f� T�f�D�h D�h 11

a2

c1 T�f�Cnv T�f�D2nh D2nh

Y�2� a1 T�f�S2n T�f�Dnd Dnd 2 b1 T�f�Dn T�f�Dnd Dnd

11 z= f
2 T�f�D2nh D2nh 15 d1 T�f�D1d T�f�D�h D�h

12 z= f
4 T2n

1 � f
2 �Dnh D2nh 14

d2

e1 T�f� T�f�D�h D�h

Y�15� b1 T�f��e ,S2n� T�f�D�h D�h Y�10� a1 T��f�S2n T��f�S2n Dnd

14 z= f
4 T� f

2 �D�h D�h 11

�=0
z=0 T�f�D2nh D2nh

14
b2

c1 T�f� T�f�D�h D�h 12

a2

a3 T��f�Cn T2n
1 �f�Dnh D2nh

Y�3� a1 T�f�Cnh T�f�Dnh Dnh 15 b1 T��f��e ,S2n� T�a�D�h D�h

11 z= f
4 T� f

2 �Dnh Dnh 14
b2

c1 T��f� T�a�D�h D�h

11

a2

b1 T�f�Cn T�f�Dnh Dnh Y�11� a1 T�f�Dnh T�f�Dnh Dnh

15 c1 T�f�C1h T�f�D�h D�h 6 z= f
4 T� f

2 �Dnh Dnh

14
c2

d1 T�f� T�f�D�h D�h 3 �= �

2n T�f�D2nh D2nh

Y�4� a1 T2n
1 �f�Cnh T2n

1 �f�Dnh D2nh 6
a2

d1 T�f�Cnv T�f�Dnh Dnh

11 z= f
2 T�f�D2nh D2nh 3

b1

c1 T�f�Cnh T�f�Dnh Dnh

12 b1 T2n
1 �f�Cn T2n

1 �f�Dnh D2nh Y�11�

b2

c2

e1

f1 T�a�Cn T�a�Dnh Dnh

15 c1 T2n
1 �f�C1h T�f�D�h D�h 15 g1 T�f�C1h T�f�D�h D�h

14
c2

d1 T2n
1 �f� T�f�D�h D�h 14

g2

h1 T�f� T�f�D�h D�h

Y�5� a1 TQ�f�Dn TQ�f�Dn Dq Y�12� a1 T��f�Cnh T��f�Cnh Dnh

2 Q=1,�= �

2n T�f�Dnd Dnd 3 �=0, �

n T�f�Dnh Dnh

3 Q=1,�=0 T�f�Dnh Dnh 4 �= �

2n T2n
1 �f�Dnh D2nh

4 Q=2n ,�=0, �

2n T2n
1 �f�Dnh D2nh 11

a2

a3 T��f�Cn T�f�Cnh Cnh

1

a2

a3

b1

c1 TQ�f�Cn TQ�f�Dn Dq 7 b1 T��f�Cn T�f�Cnh Cnh

15 d1 T�f�D1 T�f�D�h D�h 15 c1 T��f�C1h T�f�D�h D�h

14
d2

e1 T�f� T�f�D�h D�h 14
c2

d1 T��f� T�f�D�h D�h

Y�6� a1 T�f�Cnv T�f�Dnh Cnv Y�13� a1 T2n
1 �f�Dnh T2n

1 �f�Dnh D2nh

11 �= �

2n T�f�D2nh D2nh 4 �= �

2n T�f�D2nh D2nh

11

b1

c1 T�f�Cn T�f�Dnh Dnh 11 �= �

2n ,z= f
4 T� f

2 �D2nh D2nh
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GYA�k� = �
l

ilJl�d�e−il��
z

eil�yA+i2�zyAkz

�YA�
, �4�

where d=DA�k�.
It remains to specify this expression for particular confor-

mation classes, i.e., for 15 different transversals Y�i� �Table
I�. We start with the first conformation class Y�1�=TQ�f�Cn.
Substituting general element

y = �CQ�f�tCn
s

�t=0, �1, �2, . . ., s=0, . . . ,n−1� of this transversal in Eq.
�4�, one gets �GA

�F��k� denotes geometrical factor of class F�

GA
�1��k� = �

l

ilJl�d�e−il��−�A�e2�ikzzA	1

n
�

s

eil�2�/n�s

		 1

�TQ��t

e2�i�kzf+�1/Q��t
 . �5�

The sum over s vanishes unless l=M̃n for integer M̃. Then,
taking l in this form, we see that the sum over t is nonzero

only when the bracket in the exponent is an integer, K̃. This
implies that the amplitudes are distributed only within the
countable set of planes at

kz = 	−
nM̃

Q
+ K̃
/f , �6�

named layer lines. In particular, the plane kz=0 �obtained for

K̃=M̃ =0� is called equatorial layer line.

For incommensurate groups each pair of integers K̃ and M̃
uniquely defines one layer line by the constraint

k
K̃

M̃
= �k�,�, −nM̃+QK̃

Qf � ,

and geometrical factor along it is a single term with Bessel
function JnM̃�d� �see row 1� of Table II�. The set of possible
values kz, determined according to Eq. �6� by two integers, is
dense in R, i.e., layer lines are quasicontinually distributed.2

TABLE I. �Continued.�

CC OT Y Ỹ P̃I CC OT Y Ỹ P̃I

14 d1 T�f� T�f�D�h D�h 11 a2 T2n
1 �f�Cnv T�f�D2nh D2nh

Y�7� a1 T��f�Cn T��f�Cnh Dnh 4 b1 T2n
1 �f�Cnh T2n

1 �f�Dnh D2nh

11 �=0, �

n T�f�Dnh Dnh 8 d1 T2n
1 �f�Cnv T2n

1 �f�Dnh D2nh

12 �= �

2n T2n
1 �f�Dnh D2nh Y�12�

e1

f1 T2n
1 �f�Cn T2n

1 � a
2 �Dnh D2nh

14 b1 T��f� T�f�D�h D�h 15 g1 T2n
1 �f�C1h T�f�D�h D�h

Y�8� a1 T2n
1 �f�Cnv T2n

1 �f�Dnh D2nh 14
g2

h1 T2n
1 �f� T�f�D�h D�h

11 �= �

2n T�f�D2nh D2nh

12 b1 T2n
1 �f�Cn T2n

1 �f�Dnh D2nh

14 d1 T2n
1 �f� T�f�D�h D�h

FIG. 1. �Color online� Conformation classes Y=Tq
r�f�Pn illus-

trated by orbits with q=36 Å, r=5 Å, n=6 Å, r=6 Å, and a
=6 Å and rA= �5 Å,5� /72,0.45 Å�.

FIG. 2. �Color online� Conformation classes Y=T�a�Pn illus-
trated by orbits with n=12 Å and a=3 Å, and rA

= �4 Å,� /25,0.6 Å�.
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For commensurate groups, layer lines are equidistant,
spaced by 1 /a. Indeed, for kz=K /a �K is an integer�, condi-
tion �6� becomes Diophantine equation:

− rM̃ + q̃K̃ = K . �7�

It is well known that as q̃ and r are coprimes this equation

has a set of solutions M̃ =−Kp̃+Mq̃ and K̃=K 1−rp̃
q̃ −Mr �M

=0, �1, . . .� for each value of K. Thus, summing over M we
find the geometrical factor �Table II� of the layer line defined
by kK= �k� ,� ,K /a�. Conveniently, integer K can be used to
label the layer lines.

After calculating geometrical factor for the first confor-
mation class, we obtain results for the remaining orbit types
�Table II� within two-step procedure. Namely, Y�1� is halving
subgroup in the transversals Y�F� for F=2, . . . ,8, i.e., Y�F�

=Y�1�+�Y�1�. Therefore, from Eq. �3� it follows that
GA

�F��kK�= 1
2 �GA

�1��kK�+G�A
�1��kK��, and geometrical factors are

easily calculated from that for Y�1�. Further, these transver-
sals are halving subgroups of the remaining ones, i.e.,
9 , . . . ,13, and the same algorithm applies once again.

V. ANALYSIS OF DIFFRACTION INTENSITY

The diffraction patterns, representing intensity distribu-
tion along particular cross sections of k space, and configu-
ration of the system are neatly related. The symmetry of the
scattering intensity distribution S�k�, being the only observ-
able quantity in diffraction experiments, is direct conse-
quence of the symmetry of the system configuration. Even
more, in order to derive, as much as possible, information
from diffraction experiments, it is important to understand
how particular elements of symmetry are manifested in the
diffraction patterns. To this end we note that within a single
layer line at kz, the intensity distribution is a sum of terms
being products of a Bessel function, involving radial coordi-
nates k� and DA, and a trigonometric function of other coor-
dinates ��, kz, �A, and zA�. The following analysis shows that
the orders of Bessel functions and the specific form of the
trigonometric functions are determined by symmetry only:
namely, the former are related to the first family subgroup
only while the latter depend on the additional parities.

A. Symmetry of intensity distribution

The action of the arbitrary Euclidean transformation �R � f�
on the scattering intensity is derived from the action on the
coordinates:

�R�f�S�k� = ��
i

f i�k�ei2��R−1k�·ri�2
= S�R−1k� . �8�

Obviously, it is reduced to the action of only orthogonal part
on k vectors, meaning that translational part f can be ignored.

Elements of the covering symmetry group Ỹ only permute
the terms in sum, leaving thus the intensity invariant. When

the translational parts of the elements of Ỹ are skipped, iso-

gonal group P̃I is obtained. Finally, spatial inversion I only
changes the sign of ri, i.e., it is equivalent to complex con-
jugation. Thus, I is a symmetry of the diffraction intensity
distribution whether or not it is a symmetry of the system.
Summarizing, the symmetry group SY of the intensity distri-

FIG. 4. �Color online� Conformation classes T��a /2�Pn illus-
trated by orbits with n=6 Å and a=6 Å, and rA

= �4 Å,� /7,0.6 Å�.

FIG. 5. �Color online� Two linear conformation classes Y�14�

=T�a� and Y�15�=T�a�C1h illustrated by orbits with a=3 Å and
rA= �0,0 ,0.6 Å�.

FIG. 3. �Color online� Conformation classes T2n
1 �a /2�Pn illus-

trated by orbits with n=6 Å and a=6 Å, and rA

= �4 Å,� /25,0.6 Å�.
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bution is the extension of the isogonal point group P̃I by the
spatial inversion.

This group is determined for each elementary quasi-one-
dimensional crystal. Namely, for each conformation class
Y�F�, we find the isogonal point group P̃I

�F� of its symmetry
group Ỹ�F� �Table II�. Then, if P̃I

�F� contains spatial inversion,
the symmetry group S�F� of the intensity distribution is just

P̃I
�F�; otherwise S�F� is the group P̃I

�F� augmented by the spa-

tial inversion, i.e., S�F�= P̃I
�F�+IP̃I

�F�. As the isogonal point
groups of the line groups are well known,7 it remains to find
S�F� as prescribed �Table II�.

To summarize, according to their symmetry, there are
three types of scattering intensities. Incommensurate �Y�1��,
Y�5��� and linear conformation classes �Y�14� and Y�15�� pro-
duce axially symmetric intensities, with symmetry group

D�h; in addition, geometrical factor of the linear systems is
constant in each layer line. The remaining classes give dis-
tribution with symmetry group of the type Dnh, except that
Dnd is obtained for classes Y�1�, Y�2�, Y�5�, Y�6�, Y�9�, and Y�10�

for odd order of the principle axis of the isogonal point
group. Obviously, the symmetry of the scattering patterns of
the elementary systems is maximally symmetric in a sense
that, among seven families of axial point groups, these are
the largest ones.

B. Properties related to the first family subgroup

It is evident from Table II that the orders of Bessel func-
tions appearing in the geometrical factor are multiples of n,
thus manifesting pure rotational symmetry Cn �for the classes
1 and 5 this follows from the fact that n divides both p and

TABLE II. Geometrical factors for conformation classes. For each class �column F, primes single out the incommensurate cases�, the
transversal Y�F�, coset representatives with respect to rotohelical subgroup L�1� �column CR�, and diffraction space symmetry group S�F�

= ỸI+IỸI �when it depends on the parity of n, the odd case is up� are given. The last column gives geometrical factors GA
�F� in the layer lines

specified by kK= �k� ,� , K
a � for commensurate and k

K̃

M̃
= �k� ,� , QK̃−nM̃

Qf � for incommensurate groups; outside them geometrical factors vanish.

F Y�F� CR S�F� GA
�F��kK� or GA

�F��k
K̃

M̃�

1 Tq
rCn

Dqd

Dqh �MiMq−KpJMq−Kp�d�ei�Kp−Mq���−�A�e2�iK
zA

a

11 TCn

D2nh

Dnh �MiMnJMn�d�e−iMn��−�A�e2�iK
zA

a

12 T2n
1 Cn D2nh �Mi�2M−K�nJ�2M−K�n�d�ei�K−2M�n��−�A�e2�iK

zA

a

1� TQCn D�h inM̃JnM̃�d�e−inM̃��−�A�e2�i
QK̃−nM̃

Q

zA

f

2 TS2n C2n�h

Dnd

D2nh �MiM�n+1�JMn�d�e−iMn��−�A� cos�2�K
zA

a − M�
2 �

3 TCnh �h

D2nh

Dnh �MiMnJMn�d�e−iMn��−�A� cos 2�K
zA

a

4 T2n
1 Cnh �h D2nh �Mi�2M−K�nJ�2M−K�n�d�ei�K−2M�n��−�A� cos 2�K

zA

a

5 Tq
rDn U

Dqd

Dqh �MiMq−KpJMq−Kp�d�ei�Kp−Mq�� cos��Mq−Kp��A+2�K
zA

a �

5� TQDn U D�h inM̃JnM̃�d�e−inM̃� cos�2�
QK̃−nM̃

Q

zA

f −nM̃�A�

6 TCnv �v

D2nh

Dnh �MiMnJMn�d�e−iMn�ei2�K
zA

a cos Mn�A

7 T�Cn ��v � a
2 �

D2nh

Dnh �MiMn+KJMn�d�e−iMn�e2�iK
zA

a cos�Mn�A− K�
2 �

8 T2n
1 Cnv �v D2nh �Mi�2M−K�nJ�2M−K�n�d�ei2�K

zA

a ei�K−2M�n� cos�K−2M�n�A

9 TDnd �v ,Ud ,S2n

Dnd

D2nh �MiM�n+1�JMn�d�e−iMn� cos�2�K
zA

a − M�
2 �cos Mn�A

10 T�S2n ��v � a
2 � ,S2n , �Ud � a

2 �
Dnd

D2nh �MiM�n+1�+KJMn�d�e−iMn� cos�2�K
zA

a − M�
2 �cos�Mn�A− K�

2 �

11 TDnh �v ,U ,�h

D2nh

Dnh �MiMnJMn�d�e−iMn� cos 2�K
zA

a cos Mn�A

12 T�Cnh ��v � a
2 � ,U , �S2n � a

2 �
D2nh

Dnh �MiMn+KJMn�d�e−iMn� cos 2�K
zA

a cos�Mn�A− K�
2 �

13 T2n
1 Dnh �v ,U ,�h D2nh �Mi�2M−K�nJ�2M−K�n�d�ei�K−2M�n� cos 2�K

zA

a cos�K−2M�n�A

14 T D�h ei2�K
zA

a

15 TC1h �h D�h cos�2�K
zA

a �
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q�. However, which of these multiples are involved in a par-
ticular layer line depends on the screw axis. If it is incom-
mensurate, only a single term is included for each of densely
distributed layer lines. On the contrary, the intensity of com-
mensurable systems is localized into the equally spaced �by
1 /a� layer lines, and the Kth one contains terms with orders
qM − pK=n�q̃M − p̃K� �M =0, �1, . . .�, differing by multiple
of q. Consequently, only if the helical axis is pure transla-
tional group T�a� �then q̃=1, q=n, and p=0�, all the mul-
tiples nM appear for every layer line. Otherwise, for non-
trivial screw axes, various layer lines involve different
orders; in fact, as p̃ and q̃ are coprimes, these orders are
repeated in every q̃th layer line. This means that, unless ad-
ditional factors �multiplying Bessel functions� wipe out some
terms, radii of the peaks are the same for every q̃th layer line
�still, their intensities may differ�. This “periodicity” and al-
ready established spatial inversion symmetry of the diffrac-
tion space �relating layer lines K and −K� allow us to con-
sider only the layer lines with 0
K
 q̃ /2.

Above conclusion about the orders of the Bessel functions
may be applied to relate the diffraction patterns to particular
screw axes. To this end, denoting by x�,i the position of ith
extreme of the Bessel function J��x�, we note some proper-
ties of the Bessel functions important for further analysis. At
first, the Bessel functions of the opposite orders have the
same extremes, x�,i=x−�,i, as it follows from the property
J−��x�= �−1��J��x�. Further, the position of the ith extremum
increases with the absolute order ��� of the Bessel function,
i.e., if ����� ��� then x��,i�x�,i. In fact, only for �=0, J��x�
has the extremum at x0,1=0; for ��0, J��x� vanishes at x
=0, and changes very slowly, remaining almost zero until the
region close to the first extremum x�,1. Among the orders
involved in the geometrical factor of a layer line, the two
with the least absolute values �their first extremes are closest
to the origin� are denoted by  and �. Precisely, �−Kp
�equal modulo interval �−q /2,q /2�� while � equals −q if
�0, and −+q otherwise.

Now we note that =0 only for K=0, � q̃ , �2q̃ , . . ., i.e.,
for these layer lines J0�d� is involved; consequently, only for
them do the intensity distributions have broad maximum at
k�=0. Otherwise, the intensity gap appears: the first maxi-
mum �bright spot� is at k�=x,1 /�DA�0. In particular, the
narrowest gap is for the layer lines K= �r+sq̃
�=0, �1, . . .�, since for these values of K the minimal non-

zero M̃ = �rp̃+Mq̃= �1 appears �for some M�, yielding the
minimal nonzero order �= �n of the allowed Bessel
function.

As for the angular dependence of intensity distribution,
we note that only a phase factor in each term depends on �.
As it has unit absolute value, angular modulation of diffrac-
tion intensity is due only to the interference between differ-
ent terms in the absolute square of geometrical factor. The
period of the pattern, i.e., the greatest common angular pe-
riod of all the terms in S�k�, is 2� /q, manifesting the known
invariance of the pattern under the rotations from the isogo-
nal group. Some patterns contain several seemingly solid
circles around Z axis, as if the leading terms are axially sym-
metric. Indeed, J��d� is negligible for k��k�, where k� is
less but close to x�,1 /�DA. Therefore, the only Bessel func-

tion relevant in this region around Z axis is J�d�, thus pro-
ducing almost nonmodulated solid circles at the radii corre-
sponding to its extremes. Their number can be easily found
for each layer line while it depends on k�, i.e., the criterion
of neglecting of J��d�. However, as between two zeros there
is always a single extreme of Bessel functions, this number is
close to, but not greater than, the number of zeros of J�d�
less than x�,1 /�DA.

Note that the circles do not appear only if ���= ��, i.e.,
when the two closest to zero orders are opposite. Obviously,
this occurs only if q̃ is even and only for the layer lines K
= � q̃ /2, �3q̃ /2, �5q̃ /2, . . .; since p̃ is odd �as a coprime
with q̃� we write p̃=2P+1, and substitute M − P by M get-
ting the geometrical factor in the form:

GA
�1��kK� = 2e2�iK�zA/a� �

M�0
iMq+�q/2�JMq+�q/2��d�

	 cos��2M + 1��� − �A�
q

2
 .

The cosine factor makes significant angular modulation.
Even more, it vanishes for

� j = �A + ��2j + 1�/q, j = 0, . . . ,q − 1, �9�

which is manifested as the extinction of these layer lines in
diffraction patterns for normal incidence along q directions
specified by the angles � j.

C. Parities

As for the conformation of the class Y�1�, the Bessel func-
tions of each term are multiplied by a phase factor depending
on �, coordinates of the orbit representative, and counters K
and M. Such multipliers, all having unit absolute value, nei-
ther amplify nor diminish contribution of particular terms to
diffraction intensity. However, in other conformation classes,
parities change some parts of these phase factors to cosine
functions: �h yields cosine dependence on K and zA, �v on M
and �A, glide plane on K, M, and �A, rotoreflectional plane
on K, zA, and M, and U axis on all four parameters. When
two parities are present, each contributes by the correspond-
ing factor. In special positions of orbit representatives this
effect may lead to disappearing of some layer lines. Cosine
dependence on M and �A means that Bessel functions in a
sum are scaled by different factors. The effect of this is radial
modulation of intensity in comparison to the same layer line
of the class Y�1� with equal helical axis. It should be noted
that the effects introduced by different parities increase the
symmetry group of diffraction distribution, such that S�F� is
obtained.

These properties will be more neatly analyzed and illus-
trated in the rest of this section. To clarify the effects of the
first family subgroup and parities, we make a comparative
study of the orbits generated by the transversals with the
same group of generalized translations �one of Tq

r�f�, T�a�,
T2n

1 �a /2�, and T��a /2�, Figs. 1–5� and different parities; also,
the first family subgroup and coordinates of orbit represen-
tatives are the same for all the mutually compared orbits.

The plotted region of k in the figures is a square of the
length of 4 Å−1, and all radial and z coordinates of orbit
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representatives are given in Å. In order to emphasize the
general characteristics, the figures present normalized inten-
sity, i.e., absolute square of GA

�F��k�, as the omitted term f�k�
�being system dependent and also a rapidly decreasing func-
tion� may make described effects harder to observe. At the
top of each figure are the normal-incidence patterns, with kin
along y axis �i.e., �=0� unless specified otherwise; below
are different patterns along the specified layer lines.

1. Chiral conformation classes: Tq
r(f)Pn

In accordance with conclusions of Sec. V B, for nontrivial
commensurate helical axis, layer lines are spaced by 1 /a but
in all of them except for K=0, �q /n , �2q /n. . . �equatorial
and those spaced by multiple of 1 / f =qa /n from it� K depen-
dent intensity gap appears. Therefore q /n can be determined
from the distance of two layer lines with no intensity gap
while r is equal to K value of the layer line with minimal
nonzero intensity gap. To find n, i.e., to complete determina-
tion of Y�1�, one can use gap’s width of this layer line; also,
information about the order of the principle axis of the iso-
gonal group q may be obtained from rotational invariance of
any layer line’s intensity distribution. Additional U-axis par-
ity in Y�5� infers the dumping factor cos��Mq−Kp��A

+2�K
zA

a �, making patterns sensitive to the coordinate zA of
the orbit representative; also, the extinction of intensity along
specific � directions is not a general rule any more. Two
examples of these classes are in Fig. 6. Note the differences
of the equatorial layer line patterns caused by special angular
position of the representative atom �A, for which vanishes
the cosine coefficient multiplying the Bessel function of the
lowest nonzero order 36 in G�5��k0� for T36

5 �1 Å�D6. Also,
extinction of layer line K= q̃ /2=3 along q=36 directions is
clearly visible from intensity distribution along these lines
for both orbits.

2. Conformation classes T(a)Pn

At first, here belong both linear conformation classes
Y�14�=T�a� and Y�15�=T�a�C1h �Fig. 5�. Their geometrical
factors are constant functions along fixed layer line. Still,
these two classes are easily distinguished: as for Y�14� the
geometrical factor is the same for all the layer lines, while
for Y�15�, due to the additional horizontal mirror plane �h, it
depends on K and zA through the scaling factor
cos�2�KzA /a�.

Nonlinear transversals of this type contain the first family
subgroup L�1�=T�a�Cn: Y�11�, Y�2�, Y�3�, Y�6�, Y�9�, and Y�11�

�Fig. 2�. As in this case p=0, geometrical factor for each K
contains the same Bessel functions with their orders being
multiple of n. The distinction between classes are additional
symmetries, not present in Y�11�.

For the conformation classes Y�11� and Y�3� the diffraction
patterns are shown in Fig. 7. The layer lines’ patterns are K
independent and identical for both orbits since the only dif-
ference is K-dependent multiplier of Bessel functions com-
mon for all the terms in the sum. However, instead of phase
ei2�Kza/a for Y�11�, due to �h this factor is cos�2�KzA /a� for
Y�3�. Consequently, intensity of Kth layer line of Y�3� equals
to intensity of Y�11� dumped by the square of this cosine

FIG. 6. Simulated diffraction space for orbits Y�1�

=T36
5 �1 Å�C6 �left� and Y�5�=T36

5 �1 Å�D6 �right�, with orbit repre-
sentatives at rA= �5,5� /72,0.45�. Top: normal incidence patterns.
Bottom: density plot of the square of the geometric factor along
lines K=0, . . .3 �these are all different layer lines, as q̃=6�.
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factor. This is observable in the right top diffraction pattern,
where some layer lines are almost invisible. As the effect is
zA sensitive, comparison of intensities of distinct layer lines
may be used to reveal information on zA coordinate of the
atoms of the conformation class Y�3�.

The additional symmetry �v in Y�6� changes the angular
dependence of the Mth term in geometrical factor to
cos�Mn�A�. This results in dumping, and even possible van-
ishing, of particular terms in G�6��kK�, which implies that the
patterns are not the same as for Y�11� but still mutually iden-
tical �as K-dependent phase is common for all the terms�.
The conformation class Y�11� has both �h and �v parities
yielding the dumping factor cos�2�KzA /a�cos�Mn�A�. Thus,
the patterns of the corresponding layer lines are the same as
for Y�6�, only their intensities are dumped by cos2�2�KzA /a�.
The diffraction patterns of these two classes are shown in
Fig. 8.

The remaining two conformation classes are Y�2� and Y�9�.
Due to rotoreflectional plane in both groups K dependence of
the geometrical factors is manifested through multiplier
iM cos�2�KzA /a−M� /2�. As it is also M dependent, unlike
the previous cases, layer line’s pattern is K dependent. Addi-
tional vertical mirror plane in Y�9� as usual introduces
cos�Mn�A�, due to which patterns of Y�2� and Y�9� are distinct
�Fig. 9�. Note that for equatorial line �K=0� geometrical fac-
tors of both classes contain only even values of M. Value of
zA used in the examples of these two orbits makes some layer
lines less intensive than the others. Also, due to very small
intensity, differences visible in the intensity distribution

along layer K=1 layer line lines cannot be noticed at the top
diffractions patterns.

3. Conformation classes T2n
1 (a Õ2)Pn

The second achiral screw axis characterizes four confor-
mation classes Y�12�, Y�4�, Y�8�, and Y�13� �Fig. 3�. Since the
first family subgroup is in this case parametrized by q=2n
and r=1, orders of Bessel functions in the geometrical fac-
tors are �2M −K�n. In particular, for K even there is the zero-
order Bessel function, leading to the bright spot on the Z
axis. For odd K, orders of the Bessel functions are odd mul-
tiples of n, which results in nonzero intensity gap �equal for
all odd lines�. Also, as q̃=2 all odd layer lines vanish for � j
given by Eq. �9� �for q=2n�. Therefore, for normal incidence
along these directions, patterns look like those formed by
systems with pure translational group.

The first class Y�12�=T2n
1 �a /2�Cn is a special case of the

helical groups discussed above. For them coordinate zA by no
means affects the intensity while extinction angles of odd
layer lines is given by Eq. �9�, for q=2n. Additional symme-
tries of the other classes introduce different modulating trigo-
nometric factors, which change diffraction patterns �Figs. 10
and 11� although not affecting intensity gaps.

In particular, �h results only in the scaling of the intensi-
ties by the factor cos2�2�KzA /a�. This makes some of Y�4�

layer lines hardly visible �compare top panels of Fig. 10�
while the patterns of the layer lines �bottom panels� corre-
sponding to the same K are identical for both transversals.

FIG. 7. Simulated diffraction space for orbits Y�11�

=T�3 Å�C12 and Y�3�=T�3 Å�C12h. Bottom: density plot of the
square of the geometric factor along arbitrary layer line K. Top:
normal incidence patterns; while �GA

�11��kK��2 of all layer lines is the
same for Y�11� �left�, for Y�3� �right� intensity of Kth layer line is
scaled as �GA

�3��kK��2=cos2�2�KzA /a��GA
�11��kK��2.

FIG. 8. Simulated diffraction space for orbits Y�6�

=T�3 Å�C12v and Y�11�=T�3 Å�D12h. Bottom: density plot of the
square of the geometric factor along arbitrary layer line K. Top:
normal incidence patterns; while �GA

�6��kK��2 of all layer lines is the
same for Y�6� �left�, for Y�11� �right� intensity of Kth layer line is
scaled as �GA

�11��kK��2=cos2�2�KzA /a��GA
�6��kK��2.

DIFFRACTION FROM QUASI-ONE-DIMENSIONAL CRYSTALS PHYSICAL REVIEW B 79, 165439 �2009�

165439-9



On the other hand, �v changes the intensity distribution
along layer lines �compare bottom panels of Figs. 10 and 11�.
For Y�13�, containing both �h and �v, both effects occur, mak-
ing Kth layer line pattern the same as for Y�8� but with inten-
sity scaled by cos2�2�KzA /a� �Fig. 11�. Also, �v modifies the
directions of extinction of odd layer lines:

� j = ��2j + 1�/2n, j = 0, . . . ,2n − 1. �10�

4. Conformation classes T�(a Õ2)Pn

In the last three classes Y�7�=T��a /2�Cn, Y�10�

=T��a /2�S2n, and Y�12�=T��a /2�Cnh �Fig. 4�, group of gen-
eralized translations is glide plane ��v �a /2� while the first
family subgroup is L�1�=T�a�Cn. Despite this, the term M
=0 vanishes for K odd due to the factor cos�Mn�A− K�

2 �
invoked by the glide plane, which makes nonzero intensity
gap of these layer lines similar to the case of the transversals
with the first family subgroup T2n

1 �a /2�Cn. For these layer
lines the geometrical factor of Y�7� becomes

GA
�7��kK� = 2e2�iK�zA/a� �

M�0
sin�Mn�A�iMnJMn�d�sin�Mn�� .

The last factor, characteristic for all three classes, leads to the
extinction of odd layer lines along the 2n normal-incidence
directions:

� j = �j/n, j = 0, . . . ,2n − 1. �11�

This is clearly illustrated on the left ��=0� of Figs. 12–14.
Intensity distribution along the Kth layer line of Y�7� �Fig.

12� is identical to that of Y�12� �Fig. 14� except that the in-
tensity of the latter is dumped by cos2�2�KzA /a� �due to this
only diffraction patterns for normal incidence are shown in
Fig. 14�. There are only two different patterns: one for odd K
and another for even K layer lines. This does not apply to the
remaining class Y�10� as due to rotoreflection symmetry each
layer line may be different �Fig. 13�.

VI. DISCUSSIONS

Various properties of the diffraction distribution can be
used to determine the conformation class. One starts with
determination of the group parameters of the first family sub-
group L�1�. The distance between the gapless layer lines
gives value of 1 / f for both commensurate and incommensu-
rate structures. Several first intensity maxima along these-
layer lines, corresponding to the first extremes of J0�d�, can
be used to determine diameter DA of the orbit �i.e., radial
coordinate DA /2 of the representative atom�.

FIG. 9. Simulated diffraction space for orbits Y�2�=T�3 Å�S24

�left� and Y�9�=T�3 Å�D12d �right�. Top: normal incidence patterns.
Bottom: density plot of the square of the geometric factor along
arbitrary layer line K.

FIG. 10. Top: simulated diffraction patterns for orbits Y�12�

=T12
1 �3�C6 �left� and Y�4�=T12

1 �3�C6h �right� for normal incidence.
Below: density plot of the square of geometric factors for K=0,1
layer lines �same for both classes�. Orbit representatives are at rA

= �5,5� /72,0.45�. Extinction along 12 directions is clearly visible
from density plots of K=1 line.
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In incommensurate systems, the layer lines are dense. The
least gap is for M̃ = �1, and positioned at kz= �n /Qf
+ K̃ / f and k�=xn,1 /�DA �or positions of next peaks if nec-
essary�, which is sufficient to find Q /n and n, respectively.
Then it remains to determine whether the conformation class
is Y�1�� or Y�5��: only if normalized intensity of layer lines is
independent of K does the system has no U symmetry. The
most prominent fingerprint of incommensurability is full
axial symmetry of the distribution along any layer line. In-
deed, in commensurate cases sufficiently far from the origin,
superposition with higher terms breaks axial symmetry of the
distribution. However, real experiments can hardly distin-
guish between incommensurate and commensurate cases
since only limited area around k�=0 is visible; within this
region layer lines do not seem dense while there is no proof
that the axial symmetry of the visible region can be extended
out of it. Therefore, together with n and f one finds rational
q /r approximating irrational parameter Q.

In commensurate systems the distance between the adja-
cent layer lines is 1 /a=1 / q̃ f , giving q̃; alternatively, q̃ equals
the ordinal of the first gapless line above the equatorial one.
The next step is to single out the layer line with the narrow-
est intensity gap: its height �values of the corresponding K� is
helicity parameter r; also, the leading term is Jn�d� while the
gap radius xn,1 /�DA reveals n �and q afterwards�. Alterna-
tively, q �and then n� can be found as the order of the prin-
ciple axis of diffraction space �i.e., of pattern along any layer
line�.

If q̃ is greater than two, the system is chiral. As in the case
of incommensurate systems, it remains to determine if the

lines are of the same or varying normalized intensities,
which corresponds to the first and fifth conformation classes,
respectively. Note only that diffraction does not distinguish
between left and right chiral conformations, meaning that the
above procedure gives either r or q̃−r as an irremediable
ambiguity.

The achiral classes are mutually distinguished as follows.
When all layer lines are gapless, then L�1�=TCn and Y�F� has
no glide plane symmetry. If only even layer lines are gapless,
then the first family subgroup is either TCn with glide plane
being additional symmetry or T2n

1 Cn. To distinguish between
these two cases it is necessary to analyze the equatorial line:
if the circles �their number or radii� can be explained by J0
and J2n, then L�1�=T2n

1 Cn, while J0 and Jn accommodate to
L�1�=TCn combined with glide plane. In fact, in the latter
case for K even, the number of circles is less while for odd
K, the term Jn is present, which results in the more densely
filled patterns.

Once L�1� is found, it remains to determine whether the
system additionally has some of the parities �h, U, �v, or
S2n. The following analysis applies to classes whose L�1� is
TCn without any extra glide plane. First, notice that, if the
system has none of these extra symmetries, the normalized
intensity of all layer lines is independent of K. Presence of
the vertical mirror plane �v does not affect this K indepen-
dence. However, �v changes the influence of �A in terms
with nonzero Bessel functions in the geometrical factor. For
n odd there is an evident distinction in � dependence of
diffraction intensity: the order of the principle axis of diffrac-
tion space is halved in presence of �v. On the other hand, for

FIG. 11. Top: simulated diffraction patterns for orbits Y�8�

=T12
1 �3�C6v �left� and Y�13�=T12

1 �3�D6h �right� for normal incidence.
Below: density plot of the square of geometric factors for K=0,1
layer lines �same for both classes�. Orbit representatives are at rA

= �5,5� /72,0.45�. Extinction along 12 directions is clearly visible
from density plots of K=1 line.

FIG. 12. Diffraction space for Y�7�=T��3�C6. Top: diffraction
patterns for normal incidence for two values of �; extinction of odd
layer lines is illustrated on left ��=0�. Bottom: patterns of the layer
lines K=0,1.
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n even S�F� is unaffected by addition �v, as it already in-
cludes spatial inversion, meaning that it is difficult to differ
experimentally between patterns of even n classes with and
without vertical mirror plane. Presence of �h introduces K
dependence of normalized intensity through factor
cos2�2�Kza /a� but in all layer lines the peak positions re-
main the same. If, however, peak positions are no longer the
same for all layer lines, i.e., they depend on counter K, we
have either U or S2n symmetry, which are easily distin-
guished analyzing equatorial layer line: only S2n causes the
terms with M odd to disappear. If several parities are sym-
metries of the studied class, these effects will combine.

Next we give the algorithm for L�1�=T2n
1 Cn. If there are

no extra parities we have two different types of intensity
distribution: one for odd and the other for even layer lines,
each of them independent of K. Horizontal mirror plane in-
fers the same changes as explained for TCn. However, the
presence of vertical mirror plane can be indicated by odd
layer lines for which �v affects the manner of �A dependence
of the leading term in geometrical factor. Note that the sym-
metry of diffraction space is S�F�=D2nh, independently of the
presence of any parity. Again, the effects of �v and �h are
combined in Y�13�.

It remains to consider L�1�=TCn combined with glide
plane. If there is no more symmetries, the odd layer lines
have identical normalized intensities. However, for even K,
intensity is K dependent and also the peaks positions are not
identical. Previous conclusions for additional �h apply to odd
layer lines. As for S2n, it results in K dependence of normal-
ized intensity for odd layer lines; even the peak positions
may not remain the same.

The geometrical factors �Table II� are straightforwardly
applied to the systems composed of several orbits. If a sym-
metry group of such a system is L�F� �F=1, . . . ,13�, all the
orbits of the system should be enumerated; then each of them
is to be found in column 2 of the Fth part of Table I, and the
corresponding conformation class is in the first column of the
same row. Finally, substituting individual scattering ampli-
tudes of these conformation classes in Eq. �2� gives total
scattering amplitude. The symmetry of the distribution is the
intersection of the symmetries of the included conformation
classes, and at least it is equal to PI

�F�, being the isogonal
group P�F� of L�F�, extended by spatial inversion.

Recently, this symmetry based method has been applied to
singe-wall carbon nanotubes.8 The fact that all such tubes are
single-orbit systems �of the type Y�5�; see Ref. 9� signifi-
cantly facilitates the analysis of diffraction patterns. Also, as
symmetry uniquely determines the tube structure this means
that in theory one can characterize the tube solely from the
diffraction patterns analysis. In practice some of symmetry
related features may not be visible in the experiment due to
the low scattering power of carbon or experimental limita-
tions. Nevertheless, this method definitely adds some infor-
mation necessary for unique characterization of tubes.

Of course, system whose orbits consist of diverse atoms
are the most complicated cases for the analysis of diffraction
patterns. Applying the above procedure for calculating dif-
fraction intensity enables fast simulation of the patterns and
their further analysis. As an example we consider the case of
monolayer MoS2 armchair nanotube having L=T2n

1 �a /2�Cnh
as its full symmetry group. This system consists of a pair of
sulfur planes with a metal plane between them. Each plane
can be reconstructed from a single atom so this system con-
tains three orbits in total: all of them are of type Y�12� �two
orbits with S atoms and one with Mo�. Calculated intensities
for x-ray diffraction are shown in Fig. 15. Clearly, from
shown normal-incidence pattern of tube �10,10�, it follows
that q̃=2 and r=1 while the distance between the layer lines
gives translational period a=3.16 Å. Oscillation of the in-
tensity along the layer lines is quite dense due to high diam-
eter value and interference effects between individual orbit
scattering amplitudes. It turns out that the gap of first layer
line is not sufficient for finding n as the first peak is quite
broad �this is actuality related to the �v symmetry of the
tube�. Nevertheless, n can be unequally determined by com-
parison with simulated intensities for the next-neighbor arm-
chair tubes, i.e., tubes �9,9� and �11,11�.

FIG. 13. Diffraction space for Y�10�=T��3 Å�S12. Top: diffrac-
tion patterns for normal incidence for two values of �; extinction of
odd layer lines is illustrated on left ��=0�. Bottom: patterns of the
layer lines K=0,1.

FIG. 14. Diffraction space for Y�12�=T��3 Å�C6h. Top: diffrac-
tion patterns for normal incidence for two values of �; extinction of
odd layer lines is illustrated on left ��=0�. Patterns of the layer
lines K=0,1 are identical to those of Y�7� �Fig. 12�.
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Finally, let us stress out that the presented results are ob-
tained within kinematical approximation. Still, the symmetry
of the diffraction space is model independent. In this context,

it should be noted that the range of k is restricted in the real
experiment, which leads to considerably fast fading of the
patterns with k due to atomic scattering amplitude f�k�. This
may cause that some of the features discussed above are not
easily visible. However, this varies with the type of the used
beam.

Although many of the symmetry parameters can be deter-
mined on the basis of the analysis of the experimentally ob-
tained diffraction patterns �as discussed above�, the full sym-
metry determination is possible only by finding the matching
of the measured diffraction pattern with the corresponding
one obtained by the numerical simulations. This is due to the
complexity of the diffraction images, especially in a case
where the system under consideration is built of many con-
formation classes.
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FIG. 15. �Color online� Simulated diffraction intensity for MoS2

nanotube. Left: normal incidence pattern for tube �10,10�; right:
intensity along first layer line K=r=1.
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